top of page

Morissa R. Freiberg Group

Public·10 members
Austin Hernandez
Austin Hernandez

Download __FULL__: Pack 😋 (96.74 MB)



This article is covering the full design, scale considerations and deployment steps of the Red Hat OpenStack Platform cloud solution (Release 16.1) with NVIDIA hardware accelerated packet and data processing over highly available 100GbE fabric.




Download: Pack 😋 (96.74 MB)



The solution demonstrated in this article can be easily applied to diverse use cases, such as core or edge computing, with hardware accelerated packet and data processing, for NFV, Big Data and AI workloads, over IP, DPDK and RoCE stacks.


Frequency distribution violin plots of phenotypic data observed in RIL population for twelve important yield related traits. The values of parents, IR58025B (25B) and KMR-3R is indicated with arrows for traits days to fifty percent flowering (DFF), total grain yield per plant (YLD, g), total number of grains per panicle (GP), fertile grains per panicle (FGP), 1,000 grain weight (TGW), panicle weight (PW), plant height (PH), panicle length (PL), flag leaf length (FLL), flag leaf width (FLW), productive tillers (PT), biomass (BM). The X-axis represents the traits and the Y-axis constitutes the range of values for frequency distribution for every trait. R package version 0.3.4; -project.org/web/packages/vioplot/.


This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.


Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r(2)-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.


Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055


Among natural disasters, floods are ones of those more common and devastating, often causing high environmental, economical and social costs. When a flooding event occurs, timely information about precise location, extent, dynamic evolution, etc., is highly required in order to effectively support civil protection activities aimed at managing the emergency. Satellite remote sensing may represent a supplementary information source, providing mapping and continuous monitoring of flooding extent as well as a quick damage assessment. Such purposes need frequently updated satellite images as well as suitable image processing techniques, able to identify flooded areas with reliability and timeliness. Recently, an innovative satellite data analysis approach (named RST, Robust Satellite Technique) has been applied to NOAA-AVHRR (Advanced Very High Resolution Radiometer) satellite data in order to dynamically map flooded areas. Thanks to a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, such an approach allows to overcome major drawbacks related to the previously proposed methods (mostly not automatic and based on empirically chosen thresholds, often affected by false identifications). In this paper, RST approach has been for the first time applied to both AVHRR and EOS/MODIS (Moderate Resolution Imaging Spectroradiometer) data, in order to assess its potential - in flooded area mapping and monitoring - on different satellite packages characterized by different spectral and spatial resolutions. As a study case, the flooding event which hit the Europe in August 2002 has been selected. Preliminary results shown in this study seem to confirm the potential of such an approach in providing reliable and timely information, useful for near real time flood hazard assessment and monitoring, using both MODIS and AVHRR data. Moreover, the combined use of information coming from both satellite packages (easily achievable thanks to the 041b061a72


About

Welcome to the group! You can connect with other members, ge...

Members

bottom of page